Desviación Media (Variable Aleatoria)

En estadística la desviación absoluta promedio o, sencillamente desviación media o promedio de un conjunto de datos es la media de las desviaciones absolutas y es un resumen de la dispersión estadística. Se expresa, de acuerdo a esta fórmula:
D_m = \frac{1}{N} \sum_{i=1}^n
 \left| x_i - \overline{x} \right|
La desviación absoluta respecto a la media, D_m, la desviación absoluta respecto a la mediana, DM, y la desviación típica,  \sigma , de un mismo conjunto de valores cumplen la desigualdad:
D_M \leq D_m \leq \sigma
Siempre ocurre que
0 \leq D_m \leq \frac{1}{2} Rango
donde el Rango es igual a:
Rango = \text{valor máximo} - \text{valor mínimo}
El valor:
\, D_m = 0
ocurre cuando los datos son exactamente iguales e iguales a la media aritmética y
D_m = \frac{1}{2} Rango
cuando solo hay dos valores en el conjunto de datos.

Ejemplo

Calcular la desviación media de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
desviación media

Desviación media para datos agrupados

Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la desviación media es:
delegación media
desviación media

Ejemplo

Calcular la desviación media de la distribución:
  xi fi xi · fi |x - x| |x - x| · fi
[10, 15) 12.5 3 37.5 9.286 27.858
[15, 20) 17.5 5 87.5 4.286 21.43
[20, 25) 22.5 7 157.5 0.714 4.998
[25, 30) 27.5 4 110 5.714 22.856
[30, 35) 32.5 2 65 10.174 21.428
    21 457.5   98.57
media
desviación media
desviación media

No hay comentarios:

Publicar un comentario